

Landesanstalt für Landwirtschaft und Gartenbau

Treber, Schnitzel, Schlempen -

Neue Informationen zum Einsatz der Nebenprodukte?

Anfall von Nebenprodukten zur Fütterung aus einheimischen Produktionsprozessen

- Brennerei-/Brauereigewerbe
- Zuckerproduktion
- Stärkegewinnung
- Biokraftstoffproduktion
- Obst- und Gemüseverarbeitung
- Müllerei
- Ölgewinnung/-mühlen
- div. Lebens- und Genussmittelproduktion

Fütterung von Nebenprodukten (Trocken- und Feuchtfuttermittel) aus der Lebensmittel- und Rohstoffproduktion

Grobfuttersubstitute

- Verbesserte Energie-/Nährstoffkonzentrationen sowie -aufnahmen
- Ausgleich von Grobfuttermangel
- Kraftfuttersubstitute (Mischfutterbestandteil oder Einzelkomponenten)
 - Preiswürdigkeit, Kostenreduzierung
 - Ernährungsphysiologische Vorteile, Nährstoffeigenschaften
- Beitrag zur Ressourceneffizienz und Nachhaltigkeit in der Fütterung

Besondere Nährstoffgehalte sowie Nährstoff- und Fütterungseigenschaften von Nebenprodukten

- Hohe Gehalte an im Pansen leicht fermentierbaren Zellwandbestandteilen (Pektine, Hemicellulosen).
- Hohe Faser-/aNDFom-Verdaulichkeiten (rel. hohe Energiegehalte), günstige Fermentationsmuster (erhöhte Acetatbildung), geringere pH-Wertabsenkung im Pansen, positiver Einfluss auf cellulolytische Mikroben.
- Proteinreich mit hohen Anteilen an UDP.
- Besondere Gehalte und Eigenschaften,
 z.B. Vitamingehalte, antiinflamatorische Wirkung .

Energie- und Nährstoffgehalte ausgewählter Nebenprodukte

	NEL	Roh- protein	nXP	Roh- faser	NDF	Stärke	Zucker	Roh- fett
Pressschnitzel (22 % TM)	7,4	111	153	208	420	0	31	11
Melasseschnitzel (90 % TM)	7,6	107	159	184	360	0	120	19
Biertreber (24 % TM)	6,7*	245	184	190	570	20	30	100
Kartoffelpülpe (15 % TM)	7,7	70	150	210	365	380	16	2
Weizenschlempe (6 % TM)	7,9	360	237	102	335	174	0	71
DDGS Mais/Weizen (90 % TM)	7,4	370	260	90	334	108	0	66

^{*}Gerstentreber, Weizentreber -0,2 MJ

Ausgewählte Orientierungswerte für Gehalte von Rationen für Frischmelker-/Hochleistungsgruppen an Energie, Kohlenhydraten und Protein

(nach DLG 2012, modifiziert durch ZTT, Routine Landwirtschaftsbetrieb Iden)

Parameter	je kg TM der Ration	
NEL, MJ	≥ 7,0	
NDF, g	≥ 310	
NDF aus Grobfutter, g	≥ 210	
Rohfaser, g	≥ 160	
Strukturwirksame Rohfaser ¹⁾ , g	≥ 125 ¹)	
Stärke + Zucker, g	≤ 280	
Rohprotein, g	160 (≥ 155, ≤ 170)	
Nutzbares Rohprotein, g	≥ 155	
Ruminale N-Bilanz, g	0 (> -0,5, < 1,0)	

¹⁾ Faktoren der Strukturwirksamkeit: Grobfuttersilagen, Heu, Stroh = 1; Grünfutter 0,5 bis 1; energiereiche Saftfutter = 0,25; Kraftfutter = 0

Fütterungsversuch LLG Sachsen-Anhalt, ZTT Iden (2019) Biertreberfütterung / Erhöhung NDF-Gehalte

- Einheimisches Eiweißfuttermittel (Sojaersatz)
- GVO-freie Fütterung (Sojaersatz)
- P-reduzierte Fütterung (Rapsersatz)
- Erhöhung NDF-Gehalte und Hemicellulosen (hoch verdauliche Faser)
- Reduzierte Stärkeanteile
- Positive Effekte auf Pansenphysiologie
- Erhöhte Milchfettgehalte/-bildung
- Kraftfuttersubstitution
- Preiswürdigkeit

Preiswürdigkeit von Biertreber in Abhängigkeit der Marktpreise für Futtergerste und Sojaextraktionsschrot (€/dt)

		Preis Gerste, €/t					
		120	140	160	180	200	220
/t	300	44	46	48	50	52	53
hrot, €	320	46	48	50	52	54	56
tionssc	340	49	50	52	54	56	58
extrak	360	51	53	54	56	58	60
Preis Sojaextraktionsschrot, €/t	380	53	55	57	59	60	62
Pre	400	55	57	59	61	63	65

Fütterungsversuch LLG Sachsen-Anhalt, ZTT Iden (2019) Biertreberfütterung / Erhöhung NDF-Gehalte

Fütterung von Rationen mit geringem Grobfutteranteil (50 % der TM der TMR)

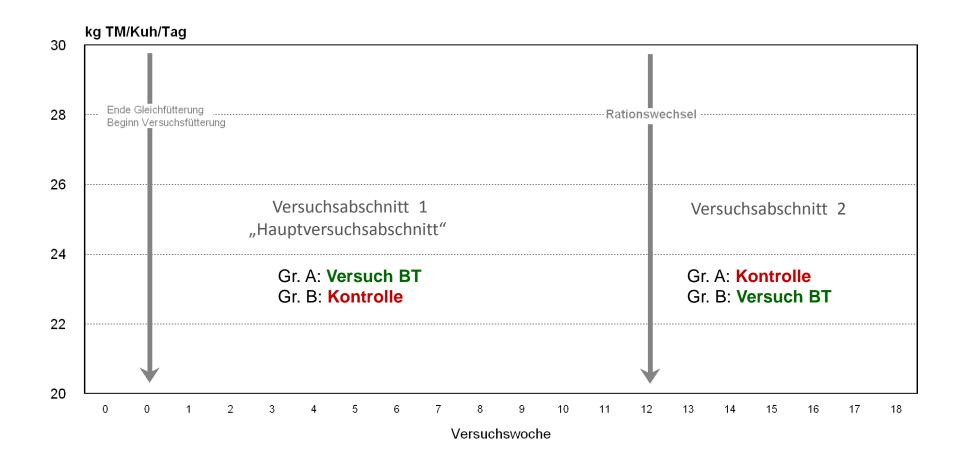
Versuchsrationen:

9 kg Biertreber je Kuh u. Tag, Pressschnitzelsilage leicht erhöht Kraftfutter um 3 bis 2,5 kg gegenüber Kontrollration reduziert (Getreide-Mais-Mischung und Rapsschrot)

Kontrollrationen:

Hoher Kraftfutteranteil

6 – 6,5 kg FM Getreide-Mais-Mischung, 5 kg Rapsschrot


6 – 8 kg Wasser je Kuh u. Tag zum Einstellen identischer TM-Gehalte beider TMR

Zusatz Puffersubstanz NaHCO₃ je Kuh u. Tag zur Erhöhung u. Angleichung der DCAB

Versuchsrationen: Ausgewählte Gehalte je kg TM der TMR

Ftt a was itt a l	Versuch BT	Kontrolle Gruppe B	
Futtermittel	Gruppe A		
NEL, MJ	7,0	7,1	
Rohprotein, g	159	158	
Nutzbares Rohprotein, g	160	161	
Strukturwirksame Rohfaser, g	125	123	
aNDFom, g	350	320	
Stärke + Zucker, g	211	239	

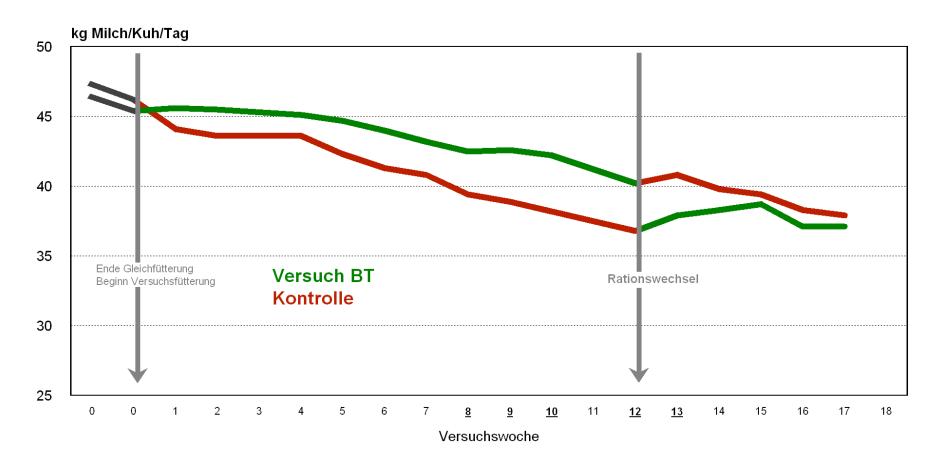
Ausgewählte Ergebnisse aus dem Versuchsabschitt 1: Futter-, Energie- und Nährstoffaufnahmen

Parameter	Versuch BT	Kontrolle
TM-Aufnahme, kg/Kuh/Tag	25,3	25,1
NEL-Aufnahme , MJ/Kuh/Tag	176	178
Stärkeaufnahmen, g/Kuh/Tag	4.771 ^a	5.409 ^b
Zuckeraufnahmen , g/Kuh/Tag	549ª	621 ^b
NDF-Aufnahme, g/Kuh/Tag	8.854 ^a	8.030 ^b
Aufnahme Hemicellulosen, g/Kuh/Tag	3.335 ^a	2.983 ^b
Aufnahme stw. Rohfaser, g/Kuh/Tag	3.154	3.088
Rohproteinaufnahmen, g/Kuh/Tag	4.014	3.969
nXP-Aufnahmen, g/Kuh/Tag	4.057	4.057

Least Square Means, SAS Prozedur MIXED,

^{ab} sign. MW-Differenz, p < 0,05

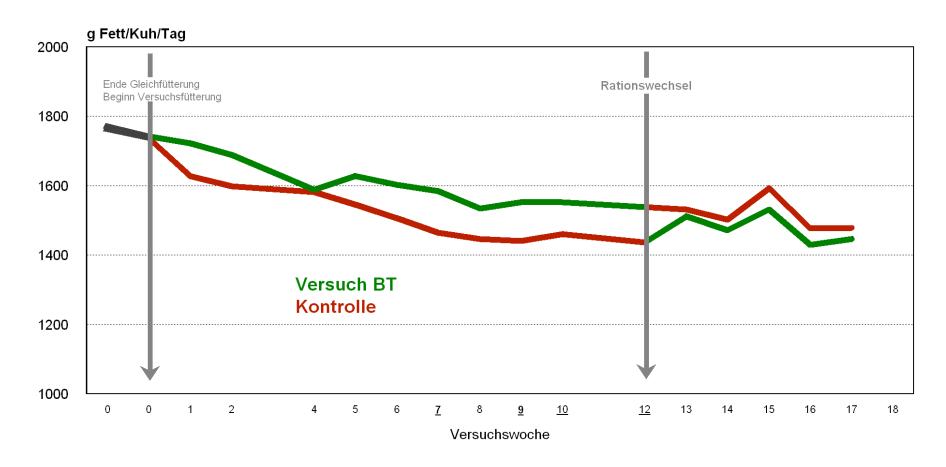
Ausgewählte Ergebnisse aus dem Versuchsabschitt 1: Milchmengen und Milchinhaltsstoffe


Parameter	Versuch BT	Kontrolle
Milchmenge, kg/Kuh/Tag	41,6 ^a	38,8 ^b
ECM, kg/Kuh/Tag	39,9ª	37,7 ^b
Milchfettgehalt, %	3,69	3,71
Milchfettmenge, g/Kuh/Tag	1.518	1.435
Milcheiweißgehalt, %	3,39ª	3,50 ^b
Milcheiweißmenge, g/Kuh/Tag	1.406	1.361
Milchharnstoffgehalt, mg/l	244ª	217 ^b

Least Square Means, SAS Prozedur MIXED,

ab sign. MW-Differenz, p < 0,05

Knapper Stärkegehalt der BT-Ration? Mikrobielle Proteinsynthese im Pansen suboptimal?

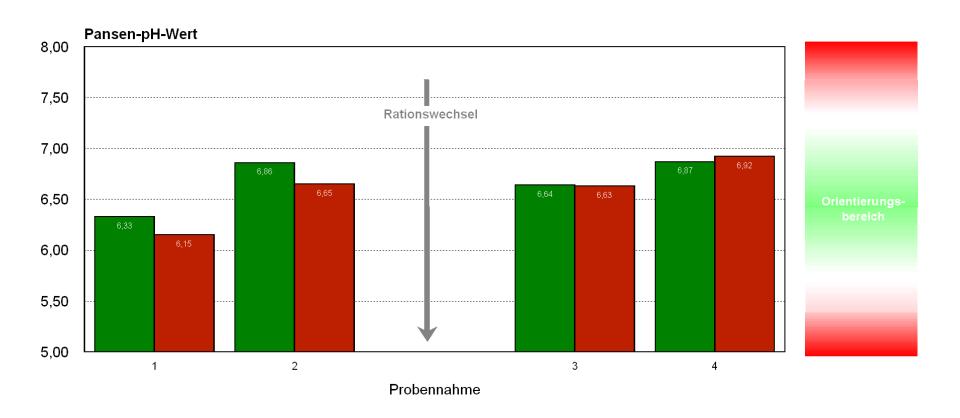

Milchmengen

fett unterstrichen kennzeichnet sign. MW-Differenz, p < 0,05

Milchfettmenge

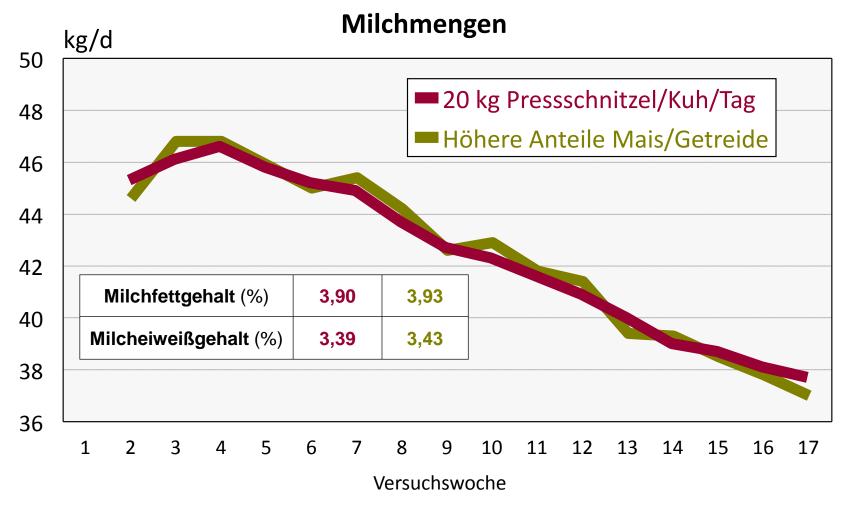
fett unterstrichen kennzeichnet sign. MW-Differenz, p < 0,05 unterstrichen kennzeichnet p < 0,1 $\,$

Ausgewählte Ergebnisse aus dem Versuchsabschitt 1: Milchmengen und Milchinhaltsstoffe


Parameter	Versuch BT	Kontrolle
Milchgeld , €/Kuh/Tag	13,38	12,72
Futterkosten, €/Kuh/Tag	4,02	3,93
Milchgeld nach Futterkosten, IOFC, €/Kuh/Tag	9,37	8,79

Kalkuliert mit aktuellen Preisen, Korrekturfaktoren sowie Kosten der eingesetzten Futtermittel

Versuch NDF/Biertreber


pH-Werte Pansensaft

jeweils 8 vergleichbare Kühe je Probentag und Gruppe/Variante

Pressschnitzelversuch, ZTT Iden (2006)

Verderb vermeiden!

Orientierungswerte für mikrobiologische Qualität von Maissilagen, Pressschnitzel, TMR und Mischrationen

Keimgruppe		Orientierungswert KbE/g Futtermittel
Bakterien, produkttypisch	KG1	< 1 Mio
Bakterien, verderbanzeigend	KG2	< 1 Mio
Streptomyceten	KG3	< 5.000
Schimmelpilze, produktionstypisch	KG4	< 5.000
Schimmelpilze, verderbanzeigend	KG5	< 5.000
Mucorales	KG6	< 1.000
Hefen	KG7	< 1 Mio

Nach EFMO (2004), Adler (2002), Wagner et al. (2006), LKS (2005), zit. bei Richardt (2007)

Orientierungswerte (Obergrenzen) zu Mykotoxingehalten für die Beurteilung der Eignung von Allein-/Mischfuttermitteln (Gesamtration, TMR) EU-Kommission 2006 (EG 2006/576)

Milchkuh, Jungrind, Mastrinder:

DON 5.000 μ g/kg (= 5 mg), **ZEA/ZON 500** μ g/kg (0,5 mg) bei 88 % TM

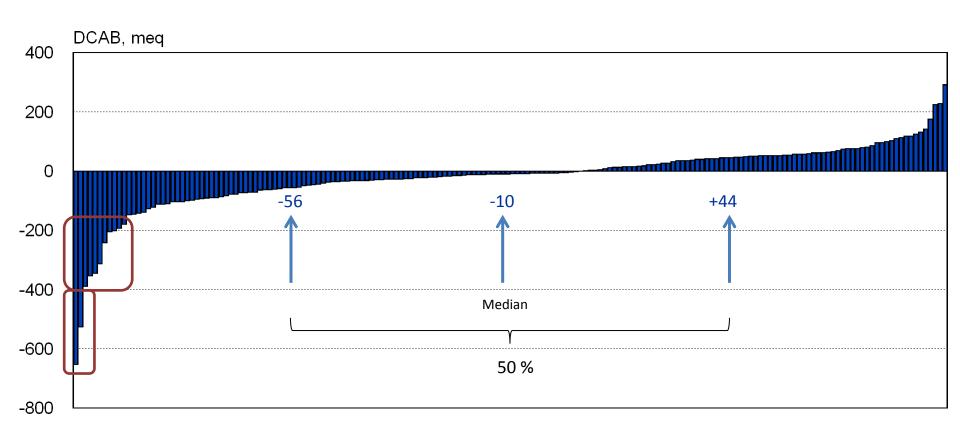
Kationen-Anionen-Bilanz Dietary Cation-Anion Balance

DCAB =
$$(Na \times 43,5 + K \times 25,6) - (Cl^{-} \times 28,2 + S \times 62,3)$$

Bedeutung DCAB in der Milchkuhfütterung

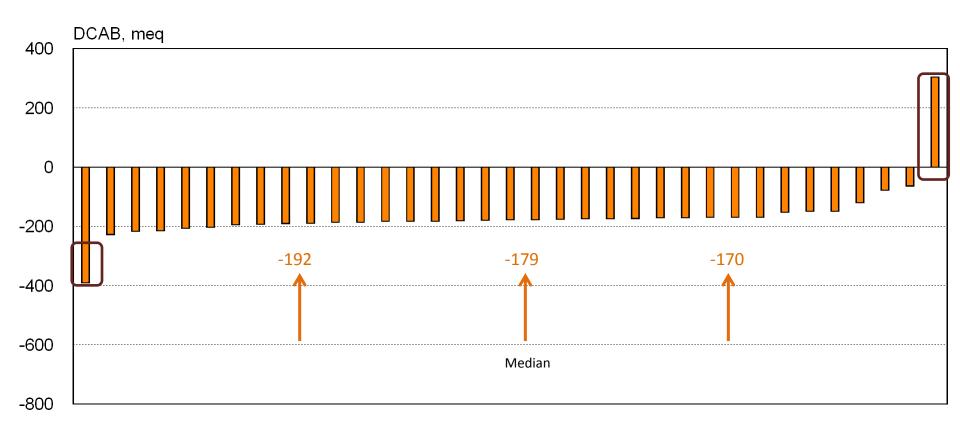
Vorbereitungsfütterung a.p.!

Laktationsfütterung?


DCAB in der Fütterung laktierender Kühe

- DCAB um 500 meq/kg TM: negativen Effekte
- **DCAB-Wert** <50 meq/kg TM → <u>0 bis negativer Bereich</u>:
 - → unerwünschte, schädigende metabolische Azidose
- Reduzierte Futteraufnahmen
- negative Folgen für Stoffwechsel- und Klauengesundheit
- unbedingt vermeiden, ggf. Gegenmaßnahmen
- Ziel-/Orientierungsbereich DCAB Ration laktierende Kühe
- > 100 meq/kg TM → 200 bis 300 meq/kg TM:

 Positiver Effekt auf Milchleistung und Futteraufnahme



DCAB von Pressschnitzelsilagen (N = 180) Labore LKSmbH, LKV BRB, LMS Rostock, LUFA NW, 2007 - 2017

DCAB von Biertreber und Biertrebersilagen (N = 38)

Labore LKSmbH, LKV BRB, LMS Rostock, LUFA NW, 2007 - 2017

DCAB von Futtermitteln (meg),

Futterwerttabellen sowie langjährige Mittel-/Erfahrungswerte Betrieb Iden und 2020/aktuell

Futtermittel	Tabellenwert	Iden Erfahrungswert	Iden aktuell 2/2020
Maissilage	260	90	100
Grassilage 1. Schnitt	430	450	280
Folgeschnitte	430	260	70
Luzernesilage	305	400	-15
Biertreber	-25		-180
Pressschnitzel	-30	-60	-170
Getreide/Mais	-10	25	40
Rapsextraktionsschrot	-50	-130	-150

Tabellenwerte: DLG-Kompakt, 2010 ("Erfolgreiche Milchfieberprophylaxe"), CBV 2005, NRC 2001, LWK NRW 2005

In Proben aus der Praxis in Abhängigkeit von Standort, Düngung, Niederschlägen u.a. Einflussfaktoren extrem hohe Variation,

z. T. in Grobfuttersilagen sehr niedrige bis stark negative DCAB!

Reaktion über Erhöhung der Na- oder/und K-Gehalte durch Rationsumstellung und Ergänzung.

Einsatz von Nebenprodukten (Biertreber, Pressschnitzelsilage)

- zur Verbesserung von Nachhaltigkeit und Ressourceneffizienz, auch in Anpassung an veränderte Grobfuttersituationen sowie im Rahmen von administrativen Vorgaben und von Verbraucheransprüchen.
- immer unter Beachtung bzw. Umsetzung grundsätzlicher und aktualisierter Bedarfsnormen für Kühe, der Orientierungswerte für Rationen und Fütterungsempfehlungen,
- unter sicherer Kenntnis der Futterwerte und Fütterungseigenschaften.
- unter Berücksichtigung möglicher "besonderer Fütterungseffekte" sowie der ökonomischen Einsatzwürdigkeit.
- bei Sicherung bekannter futtermittelhygienischer Erfordernisse mittels Umsetzung von Konservierung, Lagerung sowie Entnahme und Vorlage nach guter fachlicher Praxis.